Title of article :
Designing a Sustainable Reverse Logistics Network Considering the Conditional Value at Risk and Uncertainty of Demand under Different Quality and Market Scenarios
Author/Authors :
Sajedi, S. Department of Industrial Engineering - Islamic Azad University South Tehran Branch, Tehran, Iran , Sarfaraz, A. H. Department of Industrial Engineering - Islamic Azad University South Tehran Branch, Tehran, Iran , Bamdad, S. Department of Industrial Engineering - Islamic Azad University South Tehran Branch, Tehran, Iran , Khalili Damghani, K. Department of Industrial Engineering - Islamic Azad University South Tehran Branch, Tehran, Iran
Pages :
20
From page :
2252
To page :
2271
Abstract :
In recent years, regarding the issues such as lack of natural resources, government laws, environmental concerns and social responsibility reverse and closed-loop supply chains has been in the center of attention of researchers and decision-makers. Then, in this paper, a multi-objective multi-product multiperiod mathematical model is presented in the sustainable closed-loop supply chain to locate distribution, collection, recycling, and disposal centers, considering the risk criterion. Conditional value at risk is used as the criterion of risk evaluation. The objectives of this research are to minimize the costs of the chain, reducing the adverse environmental effects and social responsibility in order to maximize job opportunities. Uncertainty in demand and demand-dependent parameters are modeled and determined by the fuzzy inference system. The proposed model has been solved using multi objective particle swarm optimization algorithm (MOPSO) approach and the results have been compared with Epsilon constraint method. Sensitivity analysis was performed on the problem parameters and the efficiency of the studied methods was investigated.
Keywords :
Closed-loop Supply Chain , Conditional Value at Risk , Fuzzy Inference System , Supply Chain Network Design , Sustainable
Journal title :
International Journal of Engineering
Serial Year :
2020
Record number :
2557364
Link To Document :
بازگشت