Title of article :
GB Virus C/Hepatitis G Virus Envelope Glycoprotein E2: Computational Molecular Features and Immunoinformatics Study
Author/Authors :
Ranjbar, Mohammad Mahdi university of tehran - Department of Immunology, تهران, ايران , Ghorban, Khodayar aja university of medical sciences - School of Medicine - Department of Immunology, ايران , Alavian, Moayed Middle East Liver Diseases Center (MELD), ايران , Alavian, Moayed baqiyatallah university of medical sciences - Baqiyatallah Research Center for Gastroenterology and Liver Diseases, ايران , Keyvani, Hossein tehran university of medical sciences tums - Department of Virology, تهران, ايران , Dadmanesh, Maryam aja university of medical sciences - School of Medicine - Department of Infectious Diseases, ايران , Roayaei Ardakany, Abbas University of Nevada - Department of Computer Sciences, USA , Motedayen, Mohammad Hassan Razi Vaccine and Serum Research Institute, Karaj Branch, ايران , Sazmand, Alireza payame noor university - Department of Agriculture, تهران, ايران
From page :
1
To page :
14
Abstract :
Introduction: GB virus C (GBV-C) or hepatitis G virus (HGV) is an enveloped, RNA positive-stranded flavivirus-like particle. E2 envelope protein of GBV-C plays an important role in virus entry into the cytosol, genotyping and as a marker for diagnosing GBV-C infections. Also, there is discussion on relations between E2 protein and gp41 protein of HIV. The purposes of our study are to multi aspect molecular evaluation of GB virus C E2 protein from its characteristics, mutations, structures and antigenicity which would help to new directions for future researches. Evidence Acquisition: Briefly, steps followed here were; retrieving reference sequences of E2 protein, entropy plot evaluation for finding the mutational /conservative regions, analyzing potential Glycosylation, Phosphorylation and Palmitoylation sites, prediction of primary,secondary and tertiary structures, then amino acid distributions and transmembrane topology, prediction of T and B cell epitopes, and finally visualization of epitopes and variations regions in 3D structure. Results: Based on the entropy plot, 3 hypervariable regions (HVR) observed along E2 protein located in residues 133-135, 256-260 and 279-281. Analyzing primary structure of protein sequence revealed basic nature, instability, and low hydrophilicity of this protein. Transmembrane topology prediction showed that residues 257-270 presented outside, while residues 234- 256 and 271-293 were transmembrane regions. Just one N-glycosylation site, 5 potential phosphorylated peptides and two palmitoylation were found. Secondary structure revealed that this protein has 6 α-helix, 12 β-strand 17 Coil structures. Prediction of T-cell epitopes based on HLA-A*02:01 showed that epitope NH3- LLLDFVFVL-COOH is the best antigen icepitope. Comparative analysis for consensus B-cell epitopes regarding transmembrane topology, based on physico-chemical and machine learning approaches revealed that residue 231- 296 (NH2- EARLVPLILLLLWWWVNQLAVLGLPAVEAA VAGEVFAGPALSWCLGLPVVSMILGLANLVLYFRWL-COOH) is most effective and probable B cell epitope for E2 protein. Conclusions: The comprehensive analysis of a protein with important roles has never been easy, and in case of E2 envelope glycoprotein of HGV, there is no much data on its molecular and immunological features, clinical significance and its pathogenic potential in hepatitis or any other GBV-C related diseases. So, results of the present study may explain some structural, physiological and immunological functions of this protein in GBV-C, as well as designing new diagnostic kits and besides, help to better understandingE2 protein characteristic and other members of Flavivirus family, especially HCV.
Keywords :
GB virus C , glycoprotein E2, GB virus C , Immunoinformatics
Journal title :
Hepatitis Monthly
Journal title :
Hepatitis Monthly
Record number :
2557837
Link To Document :
بازگشت