Title of article :
A METHOD TO IMPROVE RELIABILITY OF GEARBOX FAULT DETECTION WITH ARTIFICIAL NEURAL NETWORKS
Author/Authors :
Srihari, P.V. R.V. College of Engineering - Faculty of Mechanical Engineering, India , Govindarajulu, K. J.N.T. University - Faculty of Mechanical Engineering, India , Ramachandra, K. R.V. College of Engineering - Faculty of Mechanical Engineering, India
From page :
221
To page :
230
Abstract :
Fault diagnosis of gearboxes plays an important role in increasing the availability of machinery in condition monitoring. An effort has been made in this work to develop an artificial neural networks (ANN) based fault detection system to increase reliability. Two prominent fault conditions in gears, worn-out and broken teeth, are simulated and five feature parameters are extracted based on vibration signals which are used as input features to the ANN based fault detection system developed in MATLAB, a three layered feed forward network using a back propagation algorithm. This ANN system has been trained with 30 sets of data and tested with 10 sets of data. The learning rate and number of hidden layer neurons are varied individually and the optimal training parameters are found based on the number of epochs. Among the five different learning rates used the 0.15 is deduced to be optimal one and at that learning rate the number of hidden layer neurons of 9 was the optimal one out of the three values considered. Then keeping the training parameters fixed, the number of hidden layers is varied by comparing the performance of the networks and results show the two and three hidden layers have the best detection accuracy.
Keywords :
Gearbox fault diagnosis , Vibration signal , artificial neural networks , Reliability.
Journal title :
International Journal of Automotive and Mechanical Engineering (IJAME)
Journal title :
International Journal of Automotive and Mechanical Engineering (IJAME)
Record number :
2561652
Link To Document :
بازگشت