Author/Authors :
Pandesh ، S Department of Medical Physics - School of Medicine - Isfahan University of Medical Sciences , Haghjooy Javanmard ، Sh Applied Physiology Research Center, Cardiovascular Research Institute - Isfahan University of Medical Sciences , Shakeri-Zadeh ، A Department of Medical Physics - School of Medicine - Iran University of Medical Sciences , Shokrani ، P Department of Medical Physics - School of Medicine - Isfahan University of Medical Sciences
Abstract :
Background: Gold nanoshells can be tuned to absorb a particular wavelength of light. As a result, these tunable nanoparticles (NPs) can efficiently absorb light and convert it to heat. This phenomenon can be used for cancer treatment known as photothermal therapy. In this study, we synthesized Fe3O4@Au coreshell NPs, magnetically targeted them towards tumor, and used them for photothermal therapy of cancer.Objective: The main purpose of this research was to synthesize Fe3O4@Au coreshell NPs, magnetically target them towards tumor, and use them for photothermal therapy of cancer. Material and Methods: In this experimental study, twenty mice received 2 × 106 B16F10 melanoma cells subcutaneously. After tumors volume reached 100 mm3,the mice were divided into five groups including a control group, NPs group, laser irradiation group, NPs + laser group and NPs + magnet + laser group. NPs were injected intravenously. After 6 hours, the tumor region was irradiated by laser (808 nm, 2.5 W/cm2, 6 minutes). The tumor volumes were measured every other day. Results: The effective diameter of Fe3O4@Au NPs was approximately 37.8 nm. The average tumor volume in control group, NPs group, laser irradiation group, NPs + laser irradiation group and NPs + magnet + laser irradiation group increased to 47.3, 45.3, 32.8, 19.9 and 7.7 times, respectively in 2 weeks. No obvious change in the average body weight for different groups occurred. Conclusion: Results demonstrated that magnetically targeted nanophotothermal therapy of cancer described in this paper holds great promise for the selective destruction of tumors.
Keywords :
Photothermal Therapy , Hyperthermia , Magnetic Targeting , Malignant , Melanoma , cancer , Fe3O4@Au Coreshell Nanoparticles ,