Title of article :
Synthesis, characteristics, and photocatalytic activity of zinc oxide nanoparticles stabilized on the stone surface for degradation of metronidazole from aqueous solution
Author/Authors :
Alibeigi ، Amir Nasser Department of Environmental Health Engineering - Sirjan School of Medical Sciences , Javid ، Neda Environmental Health Engineering Research Center - Kerman University of Medical Sciences , Amiri Gharaghani ، Majid Department of Environmental Health Engineering - Sirjan School of Medical Sciences , Honarmandrad ، Zhila Department of Process Engineering and Chemical Technology - Faculty of Chemistry - Gdansk University of Technology , Parsaie ، Fatemeh Student Research Committee - Sirjan School of Medical Sciences
Abstract :
Background: The presence of antibiotics such as metronidazole in wastewater even at low concentrations requires searching for a suitable process such as advanced oxidation process (AOP) to reduce the level of pollutants to a standard level in water. Methods: In this study, zinc oxide (ZnO) nanoparticles were synthesized by thermal method using zinc sulfate (ZnSO4) as a precursor, then, stabilized on stone and was used as a catalyst, in order to degrade metronidazole by photocalytic process. Effective factors on the removal efficiency of metronidazole including the initial metronidazole concentration, contact time, pH, and 0.9 gL1 ZnO stabilized on the stone surface were investigated. Results: The Xray diffraction (XRD) studies showed that the synthesized nanomaterials have hexagonal Wurtzite structure. Also, scanning electron microscopy (SEM) analysis revealed that the average crystalline size of the synthesized ZnO particles was in the range of 1.93.2 nm. The spectra represented a sharp absorption edge at 390 nm for ZnO nanoparticles corresponding to band gap of 3.168 eV. The BETBJH specific surface area of the synthesized ZnO nanoparticles was 25.504 m2/g. The EDS spectrum of ZnO nanoparticles showed four peaks, which were identified as Zn and O. The maximum removal efficiency was 98.36% for the synthetic solution under a specific condition (pH = 11, reaction time = 90 minutes, ZnO concentration = 0.9 gL1, and the initial concentration of metronidazole = 10 mgL1). The photocatalytic degradation was found to follow pseudofirstorder degradation kinetics. Conclusion: Therefore, the ZnO nanoparticles synthesized by thermal decomposition are suitable and effective photocatalytic materials for degradation of pharmaceutical contaminants.
Keywords :
Zinc oxide , Metronidazole , Ultraviolet rays , Nanoparticles
Journal title :
Environmental Health Engineering and Management Journal
Journal title :
Environmental Health Engineering and Management Journal