Title of article :
EXPERIMENTAL an‎d COMPUTATIONAL INVESTIGATION OF FLAME HOLDERS IN COMBUSTION CHAMBERS AT DIFFERENT THERMAL LOADS
Author/Authors :
Abbas Alhumairi, Mohammed KH Department of Mechanical Engineering - University of Diyala, Diyala, Iraq , Yahya, Samir Gh. Department of Mechanical Engineering - University of Diyala, Diyala, Iraq , Azzawi, Itimad D J Department of Mechanical Engineering - University of Diyala, Diyala, Iraq , Al-Rubaiy, Ahmed AAG Department of Mechanical Engineering - University of Diyala, Diyala, Iraq
Pages :
10
From page :
369
To page :
378
Abstract :
The effect on the dynamic stability of combustors with and without flame holders were investigated experimentally and computationally with thermal loads of 3, 5, and 9 kW. Three different cases were studied, large flame holder (LFH), small flame holder (SFH) and no flame holder (NO_ FH). Flame topology was investigated in these three cases. Moreover, lean propane–air premixed combustion were also considered for two models, turbulent flame speed closure (TFC) and coherent flame (CFM). These models were investigated using different turbulent kinetic energies and turbulence dissipation rates. Experiments were performed with mean inlet velocities of 16.5, 17, 29.2, 30.8, and 52.6 cm/s, excess air ratios (λ) of 1.6, 1.65, 1.7, and 1.8. The results showed that the flame topology and location are more sensitive to the increase in the excess air ratios and thermal loads in the large flame holder than in the small flame holder. Heat transfers and species distributions caused by combustion are also investigated for the large and small flame holders; in both cases, flame stability was sustained, and the flame front position moved upward regarding to the flame holder region.
Keywords :
Premixed Combustion , Flame Stability , Flame Holder , Thermal Loads
Journal title :
Journal of Thermal Engineering
Serial Year :
2020
Full Text URL :
Record number :
2595864
Link To Document :
بازگشت