Title of article :
H-GALOIS EXTENSIONS WITH NORMAL BASIS FOR WEAK HOPF ALGEBRAS
Author/Authors :
Alonso Alvarez, J. N Departamento de Matematicas - Universidad de Vigo - Campus Universitario Lagoas-Marcosende, Spain , Fernandez Vilaboa, J. M. Departamento de Alxebra - Universidad de Santiago de Compostela - Campus Sur, Spain , Gonzalez Rodrıguez, R. Departamento de Matematica - Aplicada II - Universidad de Vigo - Campus Universitario Lagoas-Marcosende, Spain
Pages :
16
From page :
23
To page :
38
Abstract :
Let H be a weak Hopf algebra and let A be an H-comodule algebra with subalgebra of coinvariants AH. In this paper we introduce the notion of H-Galois extension with normal basis and we prove that AH ,→ A is an H-Galois extension with normal basis if and only if AH ,→ A is an H-cleft extension which admits a convolution invertible total integral. As a consequence, if H is cocommutative and A commutative, we obtain a bijective correspondence between the second cohomology group H2 ϕAH (H, AH) and the set of isomorphism classes of H-Galois extensions with normal basis whose left action over AH is ϕAH .
Keywords :
H-Galois extensions , normal basis
Journal title :
International Electronic Journal of Algebra
Serial Year :
2017
Full Text URL :
Record number :
2600789
Link To Document :
بازگشت