Author/Authors :
Eryılmaz, ilker Ondokuz Mayıs University - Faculty of Science and Arts - Department of Mathematics, Turkey , Duyar, Cenap Ondokuz Mayıs University - Faculty of Science and Arts - Department of Mathematics, Turkey
Abstract :
Let G be a metrizable locally compact abelian group. We prove that (L1(G), lip (α, pq)), lip (α, pq), (L1(G), Lip (α, pq)) and Lip (α, pq) are isometrically isomorphic, where Lip (α, pq) and lip (α, pq) denote the Lipschitz-Lorentz spaces defined on G, (L1(G),A) is the space of multipliers from L1(G) to A and lip (α, pq) denotes the relative completion of lip (α, pq). Also, we characterize the space of multipliers from Lorentz spaces to the Lipschitz-Lorentz-Zygmund classes LΛ∗(α, pq;G) and Lλ∗(α, pq;G).
Keywords :
Lorentz spaces , Lipschitz spaces , Zygmund classes , Relative completion , Multipliers , Translation operator