Title of article :
ON LIPSCHITZ-LORENTZ SPACES AND THEIR ZYGMUND CLASSES
Author/Authors :
Eryılmaz, ilker Ondokuz Mayıs University - Faculty of Science and Arts - Department of Mathematics, Turkey , Duyar, Cenap Ondokuz Mayıs University - Faculty of Science and Arts - Department of Mathematics, Turkey
From page :
159
To page :
169
Abstract :
Let G be a metrizable locally compact abelian group. We prove that (L1(G), lip (α, pq)), lip (α, pq), (L1(G), Lip (α, pq)) and Lip (α, pq) are isometrically isomorphic, where Lip (α, pq) and lip (α, pq) denote the Lipschitz-Lorentz spaces defined on G, (L1(G),A) is the space of multipliers from L1(G) to A and lip (α, pq) denotes the relative completion of lip (α, pq). Also, we characterize the space of multipliers from Lorentz spaces to the Lipschitz-Lorentz-Zygmund classes LΛ∗(α, pq;G) and Lλ∗(α, pq;G).
Keywords :
Lorentz spaces , Lipschitz spaces , Zygmund classes , Relative completion , Multipliers , Translation operator
Journal title :
Hacettepe Journal Of Mathematics an‎d Statistics
Journal title :
Hacettepe Journal Of Mathematics an‎d Statistics
Record number :
2600934
Link To Document :
بازگشت