Title of article :
Water Quality Prediction Using Artificial Intelligence Algorithms
Author/Authors :
Aldhyani, Theyazn H. H Community College of Abqaiq - King Faisal University, Al-Ahsa, Saudi Arabia , Al-Yaari, Mohammed Chemical Engineering Department - King Faisal University, Al-Ahsa, Saudi Arabia , Alkahtani, Hasan College of Computer Science and Information Technology - King Faisal University, Al-Ahsa, Saudi Arabia , Maash, Mashael Software Engineering Department - King Saud University, Riyadh, Saudi Arabia
Pages :
11
From page :
1
To page :
11
Abstract :
During the last years, water quality has been threatened by various pollutants. Therefore, modeling and predicting water quality have become very important in controlling water pollution. In this work, advanced artificial intelligence (AI) algorithms are developed to predict water quality index (WQI) and water quality classification (WQC). For the WQI prediction, artificial neural network models, namely nonlinear auto regressive neural network (NARNET) and long short-term memory (LSTM) deep learning algorithm, have been developed. In addition, three machine learning algorithms, namely, support vector machine(SVM),K-nearest neighbor (K-NN), and Naive Bayes, have been used for the WQC forecasting. The used data set has 7significant parameters, and the developed models were evaluated based on some statistical parameters. The results revealed that the proposed models can accurately predict WQI and classify the water quality according to superior robustness. Prediction results demonstrated that the NARNET model performed slightly better than the LSTM for the prediction of the WQI valuesand the SVM algorithm has achieved the highest accuracy (97.01%) for the WQC prediction. Furthermore, the NARNET andLSTM models have achieved similar accuracy for the testing phase with a slight difference in the regression coefficient(RNARNET = 96:17%and RLSTM = 94:21%). This kind of promising research can contribute significantly to water management.
Farsi abstract :
فاقد چكيده فارسي
Keywords :
no keywords
Journal title :
Applied Bionics and Biomechanics
Serial Year :
2020
Full Text URL :
Record number :
2605319
Link To Document :
بازگشت