Title of article :
Analysis of Blood Transfusion Data Using Bivariate Zero-Inflated Poisson Model: A Bayesian Approach
Author/Authors :
Mohammadi, Tayeb Shahrekord University of Medical Sciences - Shahrekord, Iran , Kheiri, Soleiman Shahrekord University of Medical Sciences - Shahrekord, Iran , Sedehi, Morteza Shahrekord University of Medical Sciences - Shahrekord, Iran
Abstract :
Recognizing the factors affecting the number of blood donation and blood deferral has a major impact on blood transfusion. There
is a positive correlation between the variables “number of blood donation” and “number of blood deferral”: as the number of return
for donation increases, so does the number of blood deferral. On the other hand, due to the fact that many donors never return to
donate, there is an extra zero frequency for both of the above-mentioned variables. In this study, in order to apply the correlation
and to explain the frequency of the excessive zero, the bivariate zero-inflated Poisson regression model was used for joint modeling
of the number of blood donation and number of blood deferral. The data was analyzed using the Bayesian approach applying
noninformative priors at the presence and absence of covariates. Estimating the parameters of the model, that is, correlation, zeroinflation parameter, and regression coefficients, was done through MCMC simulation. Eventually double-Poisson model, bivariate
Poisson model, and bivariate zero-inflated Poisson model were fitted on the data and were compared using the deviance information
criteria (DIC). The results showed that the bivariate zero-inflated Poisson regression model fitted the data better than the other
models.
Keywords :
Zero-Inflated , Bayesian Approach , Blood , MCMC
Journal title :
Computational and Mathematical Methods in Medicine