Title of article :
Bayesian Inference for Functional Dynamics Exploring in fMRI Data
Author/Authors :
Guo, Xuan Department of Computer Science - Georgia State University - Atlanta, USA , Liu, Bing Department of Mathematics and Statistics - Georgia State University - Atlanta, USA , Chen, Le Department of Mathematics and Statistics - Georgia State University - Atlanta, USA , Chen, Guantao Department of Mathematics and Statistics - Georgia State University - Atlanta, USA , Pan, Yi Department of Computer Science - Georgia State University - Atlanta, USA , Zhang, Jing Department of Mathematics and Statistics - Georgia State University - Atlanta, USA
Pages :
9
From page :
1
To page :
9
Abstract :
This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI) data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM), Bayesian Connectivity Change Point Model (BCCPM), and Dynamic Bayesian Variable Partition Model (DBVPM), and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.
Keywords :
fMRI , Dynamics , Bayesian , BCCPM
Journal title :
Computational and Mathematical Methods in Medicine
Serial Year :
2016
Full Text URL :
Record number :
2607341
Link To Document :
بازگشت