Author/Authors :
Guerrero-Turrubiates, Jose de Jesus Universidad de Guanajuato - Carr. Salamanca-Valle - Palo Blanco - Salamanca, Mexico , Cruz-Aceves, Ivan Centro de Investigacion en Matematicas (CIMAT) - A.C., Jalisco S/N - Col. Valenciana - Guanajuato, Mexico , Ledesma, Sergio Universidad de Guanajuato - Carr. Salamanca-Valle - Palo Blanco - Salamanca, Mexico , Sierra-Hernandez, Juan Manuel Universidad de Guanajuato - Carr. Salamanca-Valle - Palo Blanco - Salamanca, Mexico , Velasco, Jonas Centro de Investigacion en Matematicas (CIMAT) - Fray Bartolome de las Casas - Barrio La Estacion - Aguascalientes, Mexico , Avina-Cervantes, Juan Gabriel Universidad de Guanajuato - Carr. Salamanca-Valle - Palo Blanco - Salamanca, Mexico , Avila-Garcia, Maria Susana Universidad de Guanajuato - Carr. Salamanca-Valle - Palo Blanco - Salamanca, Mexico , Rostro-Gonzalez, Horacio Universidad de Guanajuato - Carr. Salamanca-Valle - Palo Blanco - Salamanca, Mexico , Rojas-Laguna, Roberto Universidad de Guanajuato - Carr. Salamanca-Valle - Palo Blanco - Salamanca, Mexico
Abstract :
This paper presents a new method based on Estimation of Distribution Algorithms (EDAs) to detect parabolic shapes in synthetic
and medical images. The method computes a virtual parabola using three random boundary pixels to calculate the constant values
of the generic parabola equation. The resulting parabola is evaluated by matching it with the parabolic shape in the input image by
using the Hadamard product as fitness function. This proposed method is evaluated in terms of computational time and compared
with two implementations of the generalized Hough transform and RANSAC method for parabola detection. Experimental results
show that the proposed method outperforms the comparative methods in terms of execution time about 93.61% on synthetic images
and 89% on retinal fundus and human plantar arch images. In addition, experimental results have also shown that the proposed
method can be highly suitable for different medical applications.
Keywords :
Estimation , Algorithms , EDAs , RANSAC