Title of article :
Arabic web pages clustering and annotation using semantic class features
Author/Authors :
Alghamdi, Hanan M. Umm Al-Qura University - Faculty of Computer Science, Saudi Arabia , Alghamdi, Hanan M. Universiti Teknologi Malaysia ( UTM) - Faculty of Computing, Malaysia , Selamat, Ali Universiti Teknologi Malaysia ( UTM) - Faculty of Computing, UTM-IRDA Digital Media Center of Excellence, Malaysia , Abdul Karim, Nor Shahriza Prince Sultan University - Computer Information Science Department, Saudi Arabia
From page :
388
To page :
397
Abstract :
To effectively manage the great amount of data on Arabic web pages and to enable the classification of relevant information are very important research problems. Studies on sentiment text mining have been very limited in the Arabic language because they need to involve deep semantic processing. Therefore, in this paper, we aim to retrieve machine-understandable data with the help of a Web content mining technique to detect covert knowledge within these data. We propose an approach to achieve clustering with semantic similarities. This approach comprises integrating k-means document clustering with semantic feature extraction and document vectorization to group Arabic web pages according to semantic similarities and then show the semantic annotation. The document vectorization helps to transform text documents into a semantic class probability distribution or semantic class density. To reach semantic similarities, the approach extracts the semantic class features and integrates them into the similarity weighting schema. The quality of the clustering result has evaluated the use of the purity and the mean intra-cluster distance (MICD) evaluation measures. We have evaluated the proposed approach on a set of common Arabic news web pages. We have acquired favorable clustering results that are effective in minimizing the MICD, expanding the purity and lowering the runtime.
Keywords :
k , Means , Semantic similarity , Text clustering , Arabic webpage
Journal title :
Journal Of King Saud University - Computer an‎d Information Sciences
Journal title :
Journal Of King Saud University - Computer an‎d Information Sciences
Record number :
2609801
Link To Document :
بازگشت