Title of article :
Comparing the Predictive Power of Preoperative Risk Assessment Tools to Best Predict Major Adverse Cardiac Events in Kidney Transplant Patients
Author/Authors :
Dunn, Colin P Department of Surgery - Albert Einstein College of Medicine - 10461 Bronx - NY - USA , Emeasoba, Emmanuel U the Montefiore Einstein Center for Transplantation - Montefiore Medical Center - Bronx - 111 East 210th Street - 10467 NY - USA , Holtzman, Ari J Department of Surgery - Albert Einstein College of Medicine - 10461 Bronx - NY - USA , Hung, Michael Department of Surgery - Albert Einstein College of Medicine - 10461 Bronx - NY - USA , Kaminetsky, Joshua Department of Surgery - Albert Einstein College of Medicine - 10461 Bronx - NY - USA , Alani, Omar Department of Surgery - Albert Einstein College of Medicine - 10461 Bronx - NY - USA , Greenstein, Stuart M the Montefiore Einstein Center for Transplantation - Montefiore Medical Center - Bronx - 111 East 210th Street - 10467 NY - USA
Pages :
6
From page :
1
To page :
6
Abstract :
Background. Patients undergoing kidney transplantation have increased risk of adverse cardiovascular events due to histories of hypertension, end-stage renal disease, and dialysis. As such, they are especially in need of accurate preoperative risk assessment. Methods. We compared three different risk assessment models for their ability to predict major adverse cardiac events at 30 days and 1 year after transplant. these were the PORT model, the RCRI model, and the Gupta model. We used a method based on generalized U-statistics to determine statistically significant improvements in the area under the receiver operator curve (AUC), based on a common major adverse cardiac event (MACE) definition. For the top-performing model, we added new covariates into multivariable logistic regression in an attempt to create further improvement in the AUC. Results. ,e AUCs for MACE at 30 days and 1 year were 0.645 and 0.650 (PORT), 0.633 and 0.661 (RCRI), and finally 0.489 and 0.557 (Gupta), respectively. ,e PORT model performed significantly better than the Gupta model at 1 year (p � 0.039). When the sensitivity was set to 95%, PORT had a significantly higher specificity of 0.227 compared to RCRI’s 0.071 (p � 0.009) and Gupta’s 0.08 (p � 0.017). Our additional covariates increased the receiver operator curve from 0.664 to 0.703, but this did not reach statistical significance (p � 0.278). Conclusions. Of the three calculators, PORT performed best when the sensitivity was set at a clinically relevant level. ,is is likely due to the unique variables the PORT model uses, which are specific to transplant patients.
Keywords :
major adverse cardiac event (MACE) , RCRI , transplant patients , Kidney
Journal title :
Surgery Research and Practice
Serial Year :
2019
Full Text URL :
Record number :
2610040
Link To Document :
بازگشت