Title of article :
Penalized Quadratic Inference Function-Based Variable Selection for Generalized Partially Linear Varying Coefficient Models with Longitudinal Data
Author/Authors :
Zhang, Jinghua Department of Information Engineering - Jingdezhen Ceramic Institute - Jiangxi, China , Xue, Liugen Beijing University of Technology - Beijing, China
Pages :
10
From page :
1
To page :
10
Abstract :
Semiparametric generalized varying coefficient partially linear models with longitudinal data arise in contemporary biology, medicine, and life science. In this paper, we consider a variable selection procedure based on the combination of the basis function approximations and quadratic inference functions with SCAD penalty. The proposed procedure simultaneously selects significant variables in the parametric components and the nonparametric components. With appropriate selection of the tuning parameters, we establish the consistency, sparsity, and asymptotic normality of the resulting estimators. The finite sample performance of the proposed methods is evaluated through extensive simulation studies and a real data analysis.
Keywords :
Function-Based , Generalized , SCAD , GEE
Journal title :
Computational and Mathematical Methods in Medicine
Serial Year :
2020
Full Text URL :
Record number :
2613085
Link To Document :
بازگشت