• Title of article

    Application of Optimal Control to Influenza Pneumonia Coinfection with Antiviral Resistance

  • Author/Authors

    Kanyiri, Caroline W Department of Mathematics - Pan African University Institute of Basic Sciences - Technology and Innovation - Nairobi, Kenya , Luboobi, Livingstone Strathmore University - Nairobi, Kenya , Kimathi, Mark Department of Mathematics - Machakos University - Machakos, Kenya

  • Pages
    14
  • From page
    1
  • To page
    14
  • Abstract
    Influenza and pneumonia independently lead to high morbidity and mortality annually among the human population globally; however, a glaring fact is that influenza pneumonia coinfection is more vicious and it is a threat to public health. Emergence of antiviral resistance is a major impediment in the control of the coinfection. In this paper, a deterministic mathematical model illustrating the transmission dynamics of influenza pneumonia coinfection is formulated having incorporated antiviral resistance. Optimal control theory is then applied to investigate optimal strategies for controlling the coinfection using prevalence reduction and treatment as the system control variables. Pontryagin’s maximum principle is used to characterize the optimal control. The derived optimality system is solved numerically using the Runge–Kutta-based forward-backward sweep method. Simulation results reveal that implementation of prevention measures is sufficient to eradicate influenza pneumonia coinfection from a given population. The prevention measures could be social distancing, vaccination, curbing mutation and reassortment, and curbing interspecies movement of the influenza virus.
  • Keywords
    Optimal , Pneumonia , Staphylococcus
  • Journal title
    Computational and Mathematical Methods in Medicine
  • Serial Year
    2020
  • Record number

    2614446