Title of article :
Multiple Linear Regression Model of Meningococcal Disease in Ukraine: 1992–2015
Author/Authors :
Mokhort, Hennadii Department of Epidemiology - Bogomolets National Medical University of the Ministry of Health of Ukraine - Kyiv, Ukraine
Pages :
6
From page :
1
To page :
6
Abstract :
Estimating the rates of invasive meningococcal disease (IMD) from epidemiologic data remains critical for making public health decisions. In Ukraine, such estimations have not been performed. We used epidemiological data to develop a national database. These data were used to estimate the population susceptible to IMD and identify the prevalence of asymptomatic carriers of N. meningitidis using simple epidemiological models of meningococcal disease that may be used by the national policy makers. The goal was to create simple, easily understood analysis of patterns of the infection within Ukraine that would capture the major features of the infection dynamics. Studies used nationally reported data during 1992–2015. A logic model identified the prevalence of carriage and the proportion of the population susceptible to IMD as key drivers of IMD incidence. Multiple linear regression models for all ages (total population) and for children ≤14 years old were fit to national-level data. Linear models with the incidence of IMD as an outcome were highly associated with carriage and estimated susceptible population in both total population and children (R2 = 0.994 and R2 = 0.978, respectively). The susceptibility rate to IMD in the study total population averaged 0.0034 ± 0.0009% annually. At the national level, IMD can be characterized by the simple interaction between the prevalence of asymptomatic carriage and the proportion of the susceptible population. IMD association with prevalence rates of carriage and the proportion of susceptible population is sufficiently strong for national-level planning of intervention strategies for IMD.
Keywords :
Multiple , Meningococcal , Ukraine , IMD
Journal title :
Computational and Mathematical Methods in Medicine
Serial Year :
2020
Full Text URL :
Record number :
2614614
Link To Document :
بازگشت