Title of article :
Pixel-Wise Classification in Hippocampus Histological Images
Author/Authors :
Vizcaíno, Alfonso Departamento de Ciencias de la Computación - Universidad Autónoma de Aguascalientes - Aguascalientes, Mexico , Sánchez-Cruz, Hermilo Departamento de Ciencias de la Computación - Universidad Autónoma de Aguascalientes - Aguascalientes, Mexico , Sossa, Humberto Centro de Investigación en Computación - Instituto Politécnico Nacional - Ciudad de México, Mexico , Quintanar, J. Luis Departamento de Fisiologíay Farmacología - Universidad Autónoma de Aguascalientes - Aguascalientes, Mexico
Abstract :
This paper presents a method for pixel-wise classification applied for the first time on hippocampus histological images. The goal is
achieved by representing pixels in a 14-D vector, composed of grey-level information and moment invariants. Then, several
popular machine learning models are used to categorize them, and multiple metrics are computed to evaluate the performance of
the different models. The multilayer perceptron, random forest, support vector machine, and radial basis function networks were
compared, achieving the multilayer perceptron model the highest result on accuracy metric, AUC, and F1 score with highly
satisfactory results for substituting a manual classification task, due to an expert opinion in the hippocampus histological images.
Keywords :
Pixel-Wise , Hippocampus , Histological , SVM
Journal title :
Computational and Mathematical Methods in Medicine