Title of article :
At the Interface of Three Nucleic Acids: The Role of RNA-Binding Proteins and Poly(ADP-ribose) in DNA Repair
Author/Authors :
Alemasova, E.E. Institute of Chemical Biology and Fundamental Medicine, SB RAS, russia , Lavrik, O.I. Institute of Chemical Biology and Fundamental Medicine, SB RAS, russia
Pages :
13
From page :
4
To page :
16
Abstract :
RNA-binding proteins (RBPs) regulate RNA metabolism, from synthesis to decay. When bound to RNA, RBPs act as guardians of the genome integrity at different levels, from DNA damage prevention to the post-transcriptional regulation of gene expression. Recently, RBPs have been shown to participate in DNA repair. This fact is of special interest as DNA repair pathways do not generally involve RNA. DNA damage in higher organisms triggers the formation of the RNA-like polymer - poly(ADP-ribose) (PAR). Nucleic acid-like properties allow PAR to recruit DNA- and RNA-binding proteins to the site of DNA damage. It is suggested that poly(ADP-ribose) and RBPs not only modulate the activities of DNA repair factors, but that they also play an important role in the formation of transient repairosome complexes in the nucleus. Cytoplasmic biomolecules are subjected to similar sorting during the formation of RNA assemblages by functionally related mRNAs and promiscuous RBPs. The Y-box-binding protein 1 (YB-1) is the major component of cytoplasmic RNA granules. Although YB-1 is a classic RNA-binding protein, it is now regarded as a non-canonical factor of DNA repair.
Farsi abstract :
فاقد چكيده فارسي
Keywords :
DNA repair , RNA-binding proteins , Y-box-binding protein 1 , intrinsically disordered proteins , poly(ADP-ribose
Journal title :
Acta Naturae
Serial Year :
2017
Full Text URL :
Record number :
2616511
Link To Document :
بازگشت