Title of article :
Principal component analysis exploring the association between antibiotic resistance and heavy metal tolerance of plasmid-bearing sewage wastewater bacteria of clinical relevance
Author/Authors :
Mandal, Manisha Department of Physiology - MGM Medical College and LSK Hospital, Kishanganj, India , Das, Saumendra Nath Department of Zoology, University of Gour Banga, Malda, India , Mandal, Shyamapada Department of Zoology, University of Gour Banga, Malda, India
Abstract :
This paper unravels the occurrence of plasmid-mediated antibiotic resistance in association with tolerance to heavy metals among clinically relevant bacteria isolated from sewage wastewater. The bacteria isolated were identified following conventional phenotypic and/or molecular methods, and were subjected to multiple-antibiotic resistance (MAR) profiling. The isolates were tested against the heavy metals Hg2+, Cd2+, Cr2+ and Cu2+. SDS-PAGE and agarose gel electrophoretic analyses were performed, respectively, for the characterization of heavy metal stress protein and R-plasmid among the isolated bacteria. Principal component analysis was applied in determining bacterial resistance to antibiotics and heavy metals. Both lactose-fermenting ( Escherichia coli ) and non-fermenting ( Acinetobacter baumannii and Pseudomonas putida ) Gram-negative bacterial strains were procured, and showed MAR phenotypes with respect to three or more antibiotics, along with resistance to the heavy metals Hg2+, Cd2+, Cr2+ and Cu2+. The Gram-positive bacteria, Enterococcus faecalis , isolated had ‘ampicillin–kanamycin–nalidixic acid’ resistance. The bacterial isolates had MAR indices of 0.3–0.9, indicating their ( E. faecalis , E. coli , A. baumannii and P. putida ) origin from niches with high antibiotic pollution and human faecal contamination. The Gram-negative bacteria isolated contained a single plasmid (≈54 kb) conferring multiple antibiotic resistance, which was linked to heavy metal tolerance; the SDS-PAGE analysis demonstrated the expression of heavy metal stress proteins (≈59 and ≈10 kDa) in wastewater bacteria with a Cd2+ stressor. The study results grant an insight into the co-occurrence of antibiotic resistance and heavy metal tolerance among clinically relevant bacteria in sewage wastewater, prompting an intense health impact over antibiotic usage.
Keywords :
sewage wastewater bacteria , multiple-antibiotic resistance phenotypes , heavy metal tolerance , plasmid , co-resistance , 16s RNA gene sequence
Journal title :
Access Microbiology