Author/Authors :
Okada, Yuta Department of Infectious Diseases - The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan , Ikeda, Mahoko Department of Infectious Diseases - The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan , Kobayashi, Tatsuya Department of Infectious Diseases - The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan , Saito, Ryoichi Department of Molecular Microbiology - Graduate School of Medical and Dental Sciences - Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan , Higurashi, Yoshimi Department of Infection Control and Prevention - The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan , Moriya, Kyoji Department of Infectious Diseases - The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
Abstract :
Quorum sensing is known to regulate bacterial virulence, and the accessory gene regulator (agr) loci is one of the genetic loci responsible for its regulation. Recent reports examining Clostridioides difficile show that two agr loci, agr1 and agr2, regulate toxin production, but the diversity of agr loci and their epidemiology is unknown. In our study, in silico analysis was performed to research genetic diversity of agr, and C. difficile isolates from clinical samples underwent multilocus sequence typing (MLST) and PCR analysis of agr loci. To reveal the distribution of agr among different strains, phylogenetic analysis was also performed. In our in silico analysis, two different subtypes, named agr2R and agr2M, were found in agr2, which were previously reported. PCR analysis of 133 C . difficile isolates showed that 131 strains had agr1, 61 strains had agr2R, and 26 strains had agr2M; agr2R was mainly found in clade 1 or clade 2 organisms, whereas agr2M was only found in clade 4. With rare exception, agr1-negative sequence types (STs) belonged to clade C-Ⅰ and C-Ⅲ, and one clade 4 strain had agr2R. Our study revealed subtypes of agr2 not previously recognized, and the distribution of several agr loci in C. difficile . These findings provide a foundation for further functional and clinical research of the agr loci.
Keywords :
accessory gene regulator , Clostridioides difficile , multilocus sequence typing , phylogenetic analysis , quorum sensing