Title of article :
Electrical properties of polymer blend composites based on silicone rubber/EPDM/clay hybrid for high voltage insulators
Author/Authors :
Bazli ، Leila Rubber Group - Iran Polymer Petrochemical Institute - Nano and Smart Polymers Center of Excellence , Eskandarinezhad ، Sara Department of Mining and Metallurgy - Yazd University , Kakur ، Naresh Department of Mechanical Engineering - Indian Institute of Technology Madras , Ramachandran ، Velmurugan Department of Aerospace Engineering - Indian Institute of Technology Madras , Bacigalupe ، Alejandro Center of Advanced Materials - National Institute of Industrial Technology (INTI) , Mansilla ، Marcela Center of Advanced Materials - National Institute of Industrial Technology (INTI) , Escobar ، Mariano Center of Advanced Materials - National Institute of Industrial Technology (INTI)
Abstract :
Silicone rubber (SR) and ethylene-propylene-diene monomer (EPDM) are widely-used polymers as housing for high voltage insulators. In this work, SR/EPDM/clay nanocomposites were obtained by two-roll mill mixing for outdoor polymeric insulators. Morphology, dielectric properties, dielectric breakdown strength (DBS), and surface and volume resistivity of different weight contents of nanoclay (Cloisite 15A) incorporated in SR, EPDM, and SR/EPDM hybrid nanocomposites were characterized. In addition, the distribution of breakdown voltages was fit to the distribution of Weibull and estimated the scale and shape parameters. The polar groups of the clay particles enhanced the polarization capability of the nanocomposites. Moreover, DBS results showed an enhancement of the dielectric strength proportional to clay content. Finally, the surface and volume resistance of all nanocomposites decreases but maintains very high electrical resistance. The experimental data presented in this study will be useful for designing and manufacturing the outdoor insulators.
Keywords :
EPDM , Silicone rubber , Clay , Nanocomposite , Dielectric properties
Journal title :
Journal of Composites and Compounds
Journal title :
Journal of Composites and Compounds