Title of article :
Crystal structure and luminescence properties of 2-[(2′,6′-dimethoxy-2,3′-bipyridin-6-yl)oxy]-9-(pyridin-2-yl)-9H-carbazole
Author/Authors :
Moon, Suk-Hee Department of Food and Nutrition - Kyungnam College of Information and Technology, Republic of Korea , Park, Ki-Min Research Institute of Natural Science - Gyeongsang National University, Republic of Korea , Kim, Jinho Division of Science Education & Department of Chemistry - Kangwon National University, Republic of Korea , Kang, Youngjin Division of Science Education & Department of Chemistry - Kangwon National University, Republic of Korea
Abstract :
In the title compound, C29H22N4O3, the carbazole system forms a dihedral angle of 68.45 (3)° with the mean plane of the bipyridine ring system. The bipyridine ring system, with two methoxy substituents, is approximately planar (r.m.s. deviation = 0.0670 Å), with a dihedral angle of 7.91 (13)° between the planes of the two pyridine rings. Intramolecular C—H⋯O/N hydrogen bonds may promote the planarity of the bipyridyl ring system. In the pyridyl-substituted carbazole fragment, the pyridine ring is tilted by 56.65 (4)° with respect to the mean plane of the carbazole system (r.m.s. deviation = 0.0191 Å). In the crystal, adjacent molecules are connected via C—H⋯O/N hydrogen bonds and C—H⋯π interactions, resulting in the formation of a three-dimensional (3D) supramolecular network. In addition, the 3D structure contains intermolecular π–π stacking interactions, with centroid–centroid distances of 3.5634 (12) Å between pyridine rings. The title compound exhibits a high energy gap (3.48 eV) and triplet energy (2.64 eV), indicating that it could be a suitable host material in organic light-emitting diode (OLED) applications.
Keywords :
crystal structure , carbazole derivative , hydrogen bonds , luminescence , π–π stacking interactions
Journal title :
Acta Crystallographica Section E: Crystallographic Communications