Title of article :
Development of Carbon Paste Electrode/EDTA/Polymer Sensor for Heavy Metals Detection
Author/Authors :
Touzara, Sakina Molecular Electrochemistry and Inorganic Materials Team - Beni Mellal Faculty of Science and Technology - Sultan Moulay Slimane University - Marocco , Amlil, Amina Molecular Electrochemistry and Inorganic Materials Team - Beni Mellal Faculty of Science and Technology - Sultan Moulay Slimane University - Marocco , Ennachete, Madiha Molecular Electrochemistry and Inorganic Materials Team - Beni Mellal Faculty of Science and Technology - Sultan Moulay Slimane University - Marocco , Smaini, Mohamed Amine Molecular Electrochemistry and Inorganic Materials Team - Beni Mellal Faculty of Science and Technology - Sultan Moulay Slimane University - Marocco , Chtaini, Abdelilah Molecular Electrochemistry and Inorganic Materials Team - Beni Mellal Faculty of Science and Technology - Sultan Moulay Slimane University - Marocco
Abstract :
The method used to immobilize the polymer on the Disodium ethylenediamine tetraacetate (EDTA) modified carbon paste electrode (CPE/EDTA) has proved its effectiveness for the detection and chelation of heavy metals in aqueous solution. Its complex formation with Pb(II) was examined by square wave voltammetry and cyclic voltammetry. CPE/EDTA electrodes are predisposed to the phenomenon of dissolution due to several factors, such as pH, we thought to cover these electrodes with a selective polymer synthesized (9% of the polysulfone and 91% of the polyacrylonitrile) for remedy this problem. It was found that the CPE/EDTA/polymer electrode shows a better performance than the carbon paste electrode modified by EDTA molecular (CPE/EDTA). The polymer used protects the surface of the electrode while preserving its activity. These modified electrodes developed in this study allow simple, rapid and inexpensive identifi1cation of lead ions with 1.08×10-9mol/l of detection limit. The morphological study of polymer surface was examined by Atomic Force Microscopy (AFM).
Keywords :
Atomic Force Microscopy , Sensor , Cyclic voltammetry , EDTA , Heavy metals
Journal title :
Analytical and Bioanalytical Electrochemistry