Author/Authors :
Faghihi, Ramesh Department of Horticulture Science - Science and Research Branch - Islamic Azad University - Tehran, Iran , Abdossi, Vahid Department of Horticulture Science - Science and Research Branch - Islamic Azad University - Tehran, Iran , Larijani, Kambiz Department of Chemistry - Science and Research Branch - Islamic Azad University - Tehran, Iran , Moradi, Pejman Department of Horticultural Sciences - Saveh Branch - Islamic Azad University - Saveh, Iran
Abstract :
The increasing need for enhanced fresh food shelf life, as well as require of protection against forborne diseases, stimulate the growth of antimicrobial food packaging. Among the most impressive ways, the mixture of organic-inorganic, packaging, i.e. polymer inserted metal nanoparticles demonstrate to be extremely, useful. Silver nanoparticles, particularly, have antimicrobial, anti-fungi, anti-yeasts, and anti-viral activities and can be joined with both non-degradable and edible polymers for fresh packaging. The present application of AgNPs in fresh vegetable packaging is arranged by EU and USA food safety authorities carefully, due to the incapability to make certain bulletin on their toxicity. Hence, their use is figuring out in terms of Ag+ transformation into the packed food. This study was done to determine the effect of plastics embedded silver nanoparticles at concentrations of 10, 20, 30, 40, 50, and 60 ppm on some cucumber postharvest traits. In addition, it was examined the evaluation of the efficacy of AgNPs-containing hybrid materials to assure fresh vegetable safety. The results indicated that plastic bags were made successfully and 60 ppm concentration of silver nanoparticles was more effective than all other treatments on postharvest characters. Soluble solids concentration, TSS, Vitamin C, Zn, Cu, Fe, Mn, Mg, and K, is significantly affected by using bags. Cucumbers shelf life is relatively long, lasting 21 days whereas control was 13 days. In addition, the highest level of silver penetration (1.99±0.002 ppb) in exocarp, (0.25±0.006 ppb) in mesocarp, and (0.30±0.006 ppb) in endocarp was associated with the treatment of 60 ppm silver nanoparticles in cucumber. So, these bags could be used for increasing shelf life in cucumber.
Keywords :
Silver penetration , Vegetable safety , Cucumber , Silver nanocomposite , Plastics bag