Title of article :
Synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones
Author/Authors :
Ayati, Adile mazandaran university of medical sciences - Faculty of Pharmacy, Pharmaceutical Sciences Research Center - Department of Medicinal Chemistry, ايران , Falahati, Mehraban tehran university of medical sciences tums - Faculty of Medicine - Department of Parasitology, تهران, ايران , Irannejad, Hamid mazandaran university of medical sciences - Faculty of Pharmacy, Pharmaceutical Sciences Research Center - Department of Medicinal Chemistry, ايران , Emami, Saeed mazandaran university of medical sciences - Faculty of Pharmacy, Pharmaceutical Sciences Research Center - Department of Medicinal Chemistry, ايران
From page :
1
To page :
7
Abstract :
Background: The currently available antifungal drugs suffer from toxicity, greatest potential drug interactions with other drugs, insufficient pharmacokinetics properties, and development of resistance. Thus, development of new antifungal agents with optimum pharmacokinetics and less toxicity is urgent task. In the search for new azole antifungals, we have been previously described azolylchromanone oxime ethers as rigid analogs of oxiconazole. In continuation of our work, we incorporated phenylhydrazone moiety instead of oxime ether fragment in azolylchromanone derivatives. Methods: The 3-azolyl-4-chromanone phenylhydrazones were synthesized via ring closure of 2-azolyl-2 -hydroxyacetophenones and subsequent reaction with phenylhydrazine. The biological activity of title compounds was evaluated against different pathogenic fungi including Candida albicans, Saccharomyces cerevisiae, Aspergillus niger, and Microsporum gypseum. Docking study, in silico toxicity risks and drug-likeness predictions were used to better define of title compounds as antifungal agents. Results: The in vitro antifungal activity of compounds based on MIC values revealed that all compounds showed good antifungal activity against C. albicans, S. cerevisiae and M. gypseum at concentrations less than 16 μg/mL. Among the test compounds, 2-methyl-3-imidazolyl derivative 3b showed the highest values of drug-likeness and drug-score. Conclusion: The 3-azolyl-4-chromanone phenylhydrazones considered as analogs of 3-azolyl-4-chromanone oxime ethers basically designed as antifungal agents. The antifungal activity of title compounds was comparable to that of standard drug fluconazole. The drug-likeness data of synthesized compounds make them promising leads for future development of antifungal agents.
Keywords :
Azole antifungals , Antifungal activity , 1 H , imidazole , 1 , 2 , 4 , triazole , Chroman , 4 , one , Hydrazone
Journal title :
Daru Journal of Pharmaceutical Sciences
Journal title :
Daru Journal of Pharmaceutical Sciences
Record number :
2634699
Link To Document :
بازگشت