Title of article :
Essential classification rule sets
Author/Authors :
Baralis، Elena نويسنده , , Chiusano، Silvia نويسنده ,
Issue Information :
دوماهنامه با شماره پیاپی سال 2017
Pages :
-634
From page :
635
To page :
0
Abstract :
Given a class model built from a dataset including labeled data, classification assigns a new data object to the appropriate class. In associative classification the class model (i.e., the classifier) is a set of association rules. Associative classification is a promising technique for the generation of highly accurate classifiers. In this article, we present a compact form which encodes without information loss the classification knowledge available in a classification rule set. This form includes the rules that are essential for classification purposes, and thus it can replace the complete rule set. The proposed form is particularly effective in dense datasets, where traditional extraction techniques may generate huge rule sets. The reduction in size of the rule set allows decreasing the complexity of both the rule generation step and the rule pruning step. Hence, classification rule extraction can be performed also with low support, in order to extract more, possibly useful, rules.
Keywords :
Association rules , associative classification , concise representations
Journal title :
A C M Transactions on Database Systems
Serial Year :
2000
Journal title :
A C M Transactions on Database Systems
Record number :
2646
Link To Document :
بازگشت