Title of article :
Steiner Wiener Index of Complete m−Ary Trees
Author/Authors :
Legese ، MESFIN MASRE Department of mathematics - Woldia University
From page :
101
To page :
109
Abstract :
Let G be a connected graph with vertex set V(G) and edge set E(G) For a subset S of V(G) the Steiner distance d(S) of S is the minimum size of a connected subgraph whose vertex set contains S. For an integer k with 2 ≤k ≤n − 1, the k-th Steiner Wiener index of a graph G is defined as SWk (G) = ∑S⊆V(G) d(S) |S|=k In this paper, we present exact values of the k -th Steiner Wiener index of complete m-ary trees by using inclusion-exclusion principle for various values of k.
Keywords :
Steiner distance , Wiener index , Steiner Wiener index , Binary trees , Complete m , ary trees
Journal title :
Iranian Journal of Mathematical Chemistry
Journal title :
Iranian Journal of Mathematical Chemistry
Record number :
2673249
Link To Document :
بازگشت