Other language title :
زونﺑﻨﺪي ﮐﯿﻔﯿﺖ رﺧﺴﺎرهﻫﺎ در ﺷﯿﻞﻫﺎي ﮔﺎزي ﺗﻮﺳﻂ روش ﯾﺎدﮔﯿﺮي ﻋﻤﯿﻖ
Title of article :
Facies Quality Zoning in Shale Gas by Deep Learning Method
Author/Authors :
Asgari Nezhad, Yousef School of Mining Engineering - College of Engineering - University of Tehran - Tehran, Iran , Moradzadeh, Ali School of Mining Engineering - College of Engineering - University of Tehran - Tehran, Iran
Pages :
10
From page :
271
To page :
280
Abstract :
One of the most essential factors involved in unconventional gas reserves for drilling and production is a suitable quality facies determination. The direct core and geochemical analyses are the most common methods used for studying this quality. Due to the lack of this data and the high cost, the researchers have recently resorted to the indirect methods that use the common data of the reservoir (including petrophysical logs and seismic data). One of the major problems in using these methods is that the complexities of these reproducible repositories cannot be accurately modeled. In this work, the quality of facies in shale gas is zoned using the deep learning technique. The applied method is long short-term memory (LSTM) neural network. In this scheme, the features required for zoning are automatically extracted and used to model the reservoir complexities properly. The results of this work show that zoning is done with an appropriate accuracy (86%) using the LSTM neural network, while it is 78% for a conventional intelligent MLP network. This specifies the superior accuracy of the deep learning method.
Farsi abstract :
ﯾﮑﯽ از ﻣﻬﻤﺘﺮﯾﻦ ﻋﻮاﻣﻠﯽ ﮐﻪ در ذﺧﺎﯾﺮ ﻏﯿﺮ ﻣﺘﻌﺎرف ﮔﺎز ﺑﺮاي ﺣﻔﺎري و ﺗﻮﻟﯿﺪ ﻧﻘﺶ دارد، ﺗﻌﯿﯿﻦ ﮐﯿﻔﯿﺖ رﺧﺴﺎرهﻫﺎي ﻣﻨﺎﺳﺐ اﺳﺖ. روشﻫﺎي ﻣﻄﺎﻟﻌﻪ ﻣﺴﺘﻘﯿﻢ ﻣﻐﺰه و ﺗﺠﺰﯾﻪ و ﺗﺤﻠﯿﻞ ژﺋﻮ ﺷﯿﻤﯿﺎﯾﯽ راﯾﺞ ﺗﺮﯾﻦ روشﻫﺎي ﻣﻮرد ا ﺳﺘﻔﺎده ﺑﺮاي ﻣﻄﺎﻟﻌﻪ اﯾﻦ ﮐﯿﻔﯿﺖ ا ﺳﺖ. ﺑﻪ دﻟﯿﻞ ﮐﻤﺒﻮد اﯾﻦ دادهﻫﺎ و ﻫﺰﯾﻨﻪ زﯾﺎد ﺗﻮﻟﯿﺪ آنﻫﺎ، ﻣﺤﻘﻘﺎن اﺧﯿﺮاً ﺑﻪ روشﻫﺎي ﻏﯿﺮﻣﺴﺘﻘﯿﻢ ﮐﻪ در آنﻫﺎ از دادهﻫﺎي ﻣﺘﺪاول ﻣﺨﺰن )از ﺟﻤﻠﻪ ﻧﮕﺎرﻫﺎي ﭘﺘﺮوﻓﯿﺰﯾﮑﯽ و دادهﻫﺎي ﻟﺮزهاي( اﺳﺘﻔﺎده ﻣﯽﺷﻮد روي آوردهاﻧﺪ. ﯾﮑﯽ از ﻣﺸﮑﻼت ﻋﻤﺪه در اﺳﺘﻔﺎده از اﯾﻦ روشﻫﺎ اﯾﻦ اﺳﺖ ﮐﻪ ﻧﻤﯽﺗﻮان ﭘﯿﭽﯿﺪﮔﯽﻫﺎي اﯾﻦ ﻣﺨﺎزن را ﺑﻪ ﻃﻮر دﻗﯿﻖ ﻣﺪلﺳﺎزي ﮐﺮد. در اﯾﻦ ﻣﻄﺎﻟﻌﻪ، ﮐﯿﻔﯿﺖ رﺧﺴﺎرهﻫﺎ در ﺷﯿﻞ ﮔﺎزي ﺑﺎ اﺳﺘﻔﺎده از روش ﯾﺎدﮔﯿﺮي ﻋﻤﯿﻖ زونﺑﻨﺪي ﻣﯽﺷﻮد. روش اﻋﻤﺎل ﺷﺪه ﺷﺒﮑﻪ ﻋﺼﺒﯽ ﺣﺎﻓﻈﻪ ﮐﻮﺗﺎه ﻣﺪت ﺑﻠﻨﺪ )LSTM( اﺳﺖ. در اﯾﻦ روش، وﯾﮋﮔﯽﻫﺎي ﻣﻮرد ﻧﯿﺎز ﺑﺮاي زونﺑﻨﺪي ﺑﻪ ﻃﻮر ﺧﻮدﮐﺎر اﺳﺘﺨﺮاج ﺷﺪه و ﺑﺮاي ﻣﺪلﺳﺎزي ﺻﺤﯿﺢ ﭘﯿﭽﯿﺪﮔﯽﻫﺎي ﻣﺨﺰن ﻣﻮرد اﺳﺘﻔﺎده ﻗﺮار ﻣﯽﮔﯿﺮد. ﻧﺘﺎﯾﺞ اﯾﻦ ﮐﺎر ﻧﺸﺎن ﻣﯽدﻫﺪ ﮐﻪ زونﺑﻨﺪي ﺑﺎ دﻗﺖ ﻣﻨﺎﺳﺐ )86٪( ﺑﺎ اﺳﺘﻔﺎده از ﺷﺒﮑﻪ ﻋﺼﺒﯽ LSTM اﻧﺠﺎم ﺷﺪه اﺳﺖ. در ﺣﺎﻟﯽ ﮐﻪ ﺑﺮاي ﯾﮏ ﺷﺒﮑﻪ ﻋﺼﺒﯽ راﯾﺞ MLP دﻗﺖ آن 78 اﺳﺖ. اﯾﻦ اﻣﺮ ﺑﺮﺗﺮي دﻗﺖ روش ﯾﺎدﮔﯿﺮي ﻋﻤﯿﻖ را ﻣﺸﺨﺺ ﻣﯽﮐﻨﺪ.
Keywords :
Facies quality zoning , Deep learning , Petro-physical logs , Seismic , Canning basin
Journal title :
Journal of Mining and Environment
Serial Year :
2021
Record number :
2686017
Link To Document :
بازگشت