Title of article :
A fast and efficient Newton-Shultz-type iterative method for computing inverse and Moore-Penrose inverse of tensors
Author/Authors :
Khosravi Dehdezi, Eisa Department of Mathematics - Persian Gulf University, Bushehr, Iran , Karimi, Saeed Department of Mathematics - Persian Gulf University, Bushehr, Iran
Pages :
20
From page :
645
To page :
664
Abstract :
A fast and efficient Newton-Shultz-type iterative method is presented to compute the inverse of an invertible tensor. Analysis of the convergence error shows that the proposed method has the sixth order convergence. It is shown that the proposed algorithm can be used for finding the Moore-Penrose inverse of tensors. Computational complexities of the algorithm is presented to support the theoretical aspects of the paper. Using the new method, we obtain a new preconditioner to solve the multilinear system A∗NX=B. The effectiveness and accuracy of this method are re-verified by several numerical examples. Finally, some conclusions are given.
Keywords :
Tensor , iterative methods , Moore-Penrose inverse , outer inverse , Einstein product
Journal title :
Journal of Mathematical Modeling(JMM)
Serial Year :
2021
Record number :
2688279
Link To Document :
بازگشت