Title of article :
Detection of Bikers without Helmet Using Image Texture and Shape Analysis
Author/Authors :
Badaghi, R Faculty of Computer Engineering and IT - Shahrood University of Technology - Shahrood, Iran , Hassanpour, H Faculty of Computer Engineering and IT - Shahrood University of Technology - Shahrood, Iran , Askari, T Computer Science Department - Faculty of Mathematics and Computer - Higher Education Complex of Bam - Bam, Iran
Abstract :
Helmet are essential for preventing head injuries in bikers. Traffic laws are applied in most countries to bikers who don’t wear a helmet. Manually checking bikers for the usage of a helmet is a very costly and tedious task. In this regard, several helmet detection methods were developed in literature for detecting bikers violating the law in recent years. This paper proposes an image processing method based on the Local Binary Pattern (LBP), Local Variance (LV), and Histogram of Oriented Gradient (HOG) descriptors for detection of bikers without a helmet. The innovation of the proposed method is mainly on the feature extraction step, which leads the classification towards appropriately discriminating between the two classes of helmet and non-helmet. The experimental results show our method is superior to the existing methods for helmet detection. The accuracy of the proposed helmet detection method is 98.03% using the Support Vector Machine classifier.
Farsi abstract :
ﮐﻼه اﯾﻤﻨﯽ ﺑﺮاي ﺟﻠﻮﮔﯿﺮي ازآﺳﯿﺐ ﻫﺎي ﻧﺎﺣﯿﻪ ﺳﺮ ﻣﻮﺗﻮرﺳﻮاران ﺿﺮوري اﺳﺖ. در اﮐﺜﺮ ﮐﺸﻮرﻫﺎ ﺑﺮاي ﻣﻮﺗﻮرﺳﻮاراﻧﯽ ﮐﻪ از ﮐﻼه اﯾﻤﻨﯽ اﺳﺘﻔﺎده ﻧﻤﯽ ﮐﻨﻨﺪ، ﻗﻮاﻧﯿﻨﯽ وﺿﻊ ﺷﺪه اﺳﺖ. ﺑﺮرﺳﯽ ﻣﻮﺗﻮرﺳﻮاران ﻣﺘﺨﻠﻒ ﺑﻪ ﺻﻮرت دﺳﺘﯽ ﮐﺎري وﻗﺖ ﮔﯿﺮ و ﭘﺮﻫﺰﯾﻨﻪ اﺳﺖ. در اﯾﻦ راﺳﺘﺎ، در ﻃﯽ ﺳﺎل ﻫﺎي اﺧﯿﺮ ﭼﻨﺪﯾﻦ روش ﺗﺸﺨﯿﺺ ﻣﻮﺗﻮرﺳﻮاران ﺑﺪون ﮐﻼه اﯾﻤﻨﯽ اراﺋﻪ ﺷﺪه اﺳﺖ.در اﯾﻦ ﻣﻘﺎﻟﻪ ﯾﮏ روش ﺑﺮ ﺣﺴﺐ ﭘﺮدازش ﺗﺼﻮﯾﺮ ﺑﺮاي ﺷﻨﺎﺳﺎﯾﯽ ﻣﻮﺗﻮرﺳﻮاران ﺑﺪون ﮐﻼه اﯾﻤﻨﯽ ﭘﯿﺸﻨﻬﺎد ﺷﺪه اﺳﺖ.اﯾﻦ روش از ﺗﻮﺻﯿﻔﮕﺮﻫﺎي اﻟﮕﻮي دودوﯾﯽ ﻣﺤﻠﯽ، وارﯾﺎﻧﺲ ﻣﺤﻠﯽ و ﻫﯿﺴﺘﻮﮔﺮام ﻣﺒﺘﻨﯽ ﺑﺮ ﮔﺮادﯾﺎن اﺳﺘﻔﺎده ﻣﯽ ﮐﻨﺪ. ﻧﻮآوري اﯾﻦ روش اﺳﺎﺳﺎ در ﻣﺮﺣﻠﻪ اﺳﺘﺨﺮاج وﯾﮋﮔﯽ اﺳﺖ ﮐﻪ ﺑﺎﻋﺚ ﻣﯽ ﺷﻮد ﻃﺒﻘﻪ ﺑﻨﺪي دو ﮐﻼس ﺑﺎ و ﺑﺪون ﮐﻼه اﯾﻤﻨﯽ ﺑﻬﺘﺮ اﻧﺠﺎم ﺷﻮد.ﻧﺘﺎﯾﺞ ﺗﺠﺮﺑﯽ ﻧﺸﺎن ﻣﯽ دﻫﺪ ﮐﻪ روش ﭘﯿﺸﻨﻬﺎدي ﻣﺎ ﻧﺴﺒﺖ ﺑﻪ روش ﻫﺎي ﻣﻮﺟﻮد دﯾﮕﺮ، داراي ﺑﺮﺗﺮي در ﺗﺸﺨﯿﺺ و ﻃﺒﻘﻪ ﺑﻨﺪي اﺳﺖ. دﻗﺖ روش ﭘﯿﺸﻨﻬﺎدي ﺑﺮاي ﺗﺸﺨﯿﺺ ﮐﻼه اﯾﻤﻨﯽ ﺑﺎ اﺳﺘﻔﺎده از دﺳﺘﻪ ﺑﻨﺪ ﻣﺎﺷﯿﻦ ﺑﺮدار ﭘﺸﺘﯿﺒﺎن 98.03 درﺻﺪ اﺳﺖ .
Keywords :
Histogram of oriented gradient , Local Variance , Local binary pattern , Detection , Helmet , Biker
Journal title :
International Journal of Engineering