Title of article :
On finite groups all of whose bi-Cayley graphs of bounded valency are integral
Author/Authors :
Arezoomand, Majid University of Larestan
Pages :
6
From page :
247
To page :
252
Abstract :
Let k≥1 be an integer and Ik be the set of all finite groups G such that every bi-Cayley graph BCay(G,S) of G with respect to subset S of length 1≤|S|≤k is integral. Let k≥3. We prove that a finite group G belongs to Ik if and only if G≅Z3, Zr2 for some integer r, or S3.
Keywords :
Bi-Cayley graph , Integer eigenvalues , Irreducible representation
Journal title :
Transactions on Combinatorics
Serial Year :
2021
Record number :
2698145
Link To Document :
بازگشت