Title of article :
A Life Clustering Framework for Prognostics of Gas Turbine Engines under Limited Data Situations
Author/Authors :
Mahmoodian, A Mechanical Engineering Department - Sharif University of Technology - Tehran, Iran , Durali, M Mechanical Engineering Department - Sharif University of Technology - Tehran, Iran , Saadat, M ECE Faculty - Tehran University - Tehran, Iran , Abbasian, T ECE Faculty - Tehran University - Tehran, Iran
Abstract :
The reliability of data driven prognostics algorithms severely depends on the volume of data. Therefore in case of limited data availability, life estimations usually are not acceptable; because the quantity of run to failure data is not sufficient to train prognostics model efficiently. To board this problem, a life clustering prognostics (LCP) framework is proposed. LCP regenerates the train data at different ages and outcomes to increment of the training data volume. So, the method is useful for limited data conditions. In this research, initially LCP performance is studied in normal situation is; successively robustness of the framework under limited data conditions is considered. For this purpose, a case study on turbofan engines is performed. The accuracy for the proposed LCP approach is 71% and better than other approaches. The prognostics accuracy is compared in various situations of data deficiency for the case study. The prognostic measures remain almost unchanged when the training data is even one third. Successively, prognostics accuracy decreases with a slight slope; so that when the training data drops from 100 to 5%, the accuracy of the results drops 26%. The results indicates the robustness of the proposed algorithm in limited data situation. The main contribution of this paper include: (1) The effectiveness of life clustering idea for use in prognostics algorithms is proven; (2) A step-by-step framework for LCP is provided; (3) A robustness analysis is performed for the proposed prognostics algorithm
Farsi abstract :
ﻗﺎﺑﻠﯿﺖ اﻃﻤﯿﻨﺎن اﻟﮕﻮرﯾﺘﻢ ﻫﺎي ﭘﯿﺶ آﮔﻬﯽ داده-ﭘﺎﯾﻪ ﺑﻪ ﺷﺪت ﺑﻪ ﺣﺠﻢ دادهﻫﺎ ﺑﺴﺘﮕﯽ دارد. ﺑﻨﺎﺑﺮاﯾﻦ در ﺻﻮرت ﻣﺤﺪودﯾﺖ داده، ﺑﺮآورد ﻋﻤﺮ ﻣﻌﻤﻮﻻً ﻗﺎﺑﻞ ﻗﺒﻮل ﻧﯿﺴﺖ. ﺑﺮاي ﺣﻞ اﯾﻦ ﻣﺸﮑﻞ ، ﯾﮏ ﺳﺎﺧﺘﺎر ﭘﯿﺶ آﮔﻬﯽ ﻣﺒﺘﻨﯽ ﺑﺮ ﺧﻮﺷﻪ ﺑﻨﺪي ﻋﻤﺮ ﭘﯿﺸﻨﻬﺎد ﺷﺪه اﺳﺖ. اﯾﻦ ﺳﺎﺧﺘﺎر داده ﻫﺎي آﻣﻮزش را در ﺳﻨﯿﻦ ﻣﺨﺘﻠﻒ ﺑﺎزﺳﺎز ي ﮐﺮده و در ﻧﺘﯿﺠﻪ ﺣﺠﻢ اﯾﻦ دادهﻫﺎ را اﻓﺰاﯾﺶ ﻣﯽدﻫﺪ. از اﯾﻦ ﺟﻬﺖ اﯾﻦ روش ﺑﺮاي ﻣﺴﺎﺋﻠﯽ ﮐﻪ ﺑﺎ داده ﻣﺤﺪود ﻣﻮاﺟﻪ ﻫﺴﺘﻨﺪ ﻣﯽﺗﻮاﻧﺪ ﮐﺎرآﻣﺪ ﺑﺎﺷﺪ. در اﯾﻦ ﺗﺤﻘﯿﻖ ، اﺑﺘﺪا ﻋﻤﻠﮑﺮد اﻟﮕﻮرﯾﺘﻢ ﭘﯿﺸﻨﻬﺎدي در ﺷﺮاﯾﻂ ﻋﺎدي ﺑﺮرﺳﯽ ﻣﯽ ﺷﻮد. ﻣﺘﻌﺎﻗﺒﺎ ﻋﻤﻠﮑﺮد اﻟﮕﻮرﯾﺘﻢ در ﺷﺮاﯾﻂ ﻣﺤﺪودﯾﺖ داده ﻣﻄﺎﻟﻌﻪ ﻣﯽﺷﻮد. ﺑﺮاي ا ﯾﻦ ﻣﻨﻈﻮر، ﯾﮏ ﻣﻄﺎﻟﻌﻪ ﻣﻮردي روي ﻣﻮﺗﻮرﻫﺎي ﺗﻮرﺑﻮﻓﻦ اﻧﺠﺎم ﻣﯽ ﺷﻮد. ﻧﺘﺎﯾﺞ ﺣﺎﺻﻞ ﻧﺸﺎن ﻣﯽدﻫﺪ دﻗﺖ روش ﭘﯿﺸﻨﻬﺎدي در ﺷﺮاﯾﻂ ﻋﺎدي 71% و ﺑﻬﺘﺮ از روﺷﻬﺎي دﯾﮕﺮ ﺑﻮده اﺳﺖ. ﻫﻨﮕﺎﻣﯽ ﮐﻪ داده ﻫﺎي آﻣﻮزش ﺑﻪ ﻣﯿﺰان ﯾﮏ ﺳﻮم ﮐﺎﻫﺶ ﯾﺎﻓﺘﻪ، دﻗﺖ ﭘﯿﺶ آﮔﻬﯽ ﺗﻘﺮﯾﺒﺎً ﺑﺪون اﻓﺖ ﺑﺎﻗﯽ ﻣﺎﻧﺪه اﺳﺖ. وﻗﺘﯽ داده ﻫﺎي آﻣﻮزش از 100 ﺑﻪ 5 ﮐﺎﻫﺶ ﯾﺎﻓﺘﻪ، دﻗﺖ ﻧﺘﺎﯾﺞ 26 اﻓﺖ ﮐﺮده اﺳﺖ. در ﻣﺠﻤﻮع ، ﻧﺘﺎﯾﺞ ﺑﺪﺳﺖ آﻣﺪه ﺣﺎﮐﯽ از ﻣﻘﺎوم ﺑﻮدن اﻟﮕﻮرﯾﺘﻢ ﭘﯿﺸﻨﻬﺎدي در ﺷﺮاﯾﻂ ﻣﺤﺪودﯾﺖ داده اﺳﺖ.
Keywords :
Limited data , Prognosis , health management , Remaining useful life estimation , robustness
Journal title :
International Journal of Engineering