Title of article
The Magnetic Field Application on Heat Transfer of Nanofluid Flow in a Flatten Tube: CFD Simulation
Author/Authors
Davoodabadi Farahani, Somayeh Department of Mechanical Engineering - Arak University of Technology, Arak, Iran , Alibeigi, Mahdi Department of Mechanical Engineering - Arak University of Technology, Arak, Iran , Hossienabadi Farahani, Hamed Department of Mechanical Engineering - Arak University of Technology, Arak, Iran
Pages
11
From page
12
To page
22
Abstract
In this study, the efficacy of magnetic field on the two-phase nanofluid flow in the flattened tube was numerically examined. Initially, the finite volume method was used to solve the flow field and temperature. Secondly, the two-phase flow model was utilized to simulate the nanofluid flow. The consequences are associated with previously published data and good agreement observed. Thirdly, the uniform magnetic field is presumed to be constant, non-uniform, and oscillating. The results indicate that heat transfer and friction coefficient enhance with growing flatness and the nanofluid volume fraction. In the case of the constant magnetic field is exerted in the three directions, the Nusselt number increases by about 2.5%. The 90° phase delay in the oscillating magnetic field improves the heat transfer coefficient by 2%. The non-uniform magnetic field of 0.5 Tesla rather than without magnetic field in volume fraction of 0.01- 0.05 the heat transfer coefficient increases in about 1.6 – 2 times rather than the first mode. In addition, the velocity and temperature profile approached the uniform manner.
Farsi abstract
فاقد چكيده فارسي
Keywords
heat transfer , non-uniform and oscillating magnetic field , Nanofluid , flattened tube
Journal title
Challenges in Nano and Micro Scale Science and Technology
Serial Year
2021
Record number
2703902
Link To Document