Title of article :
regular graphs with large italian domatic number
Author/Authors :
lyle, jeremy olivet nazarene university - department of mathematics and computer science, usa
From page :
257
To page :
271
Abstract :
for a graph g, an italian dominating function is a function f:v(g)→{0,1,2} such that for each vertex v∈v(g) either f(v)≠0, or ∑u∈n(v)f(u)≥2. if a family f={f1,f2,…,ft} of distinct italian dominating functions satisfy ∑ti=1fi(v)≤2 for each vertex v, then this is called an italian dominating family. in [l. volkmann, the {r}oman {{2}}-domatic number of graphs, discrete appl. math. 258 (2019), 235--241], volkmann defined the italian domatic number of g, di(g), as the maximum cardinality of any italian dominating family. in this same paper, questions were raised about the italian domatic number of regular graphs. in this paper, we show that two of the conjectures are false, and examine some exceptions to a nordhaus-gaddum type inequality.
Keywords :
italian domination , nordhaus , gaddum , domatic number
Journal title :
Communications in Combinatorics and Optimization
Journal title :
Communications in Combinatorics and Optimization
Record number :
2704796
Link To Document :
بازگشت