Author/Authors :
Jamehdor ، Saleh Department of Biology - University of Sistan and Baluchestan , Farivar ، Shirin Department of Cell and Molecular Biology - Faculty of Life Sciences and Biotechnology - Shahid Beheshti University , Sangtarash ، Mohammad Hossein Department of Biology - University of Sistan and Baluchestan , Amini ، Razieh Department of Molecular Medicine - School of Medicine - Hamadan University of Medical Sciences , Pajouhanfar ، Sara Department of Medical - Iran University of Medical Sciences , Teimoori ، Ali Department of Virology - Faculty of Medicine - Hamadan University of Medical Sciences
Abstract :
Background: Arginine metabolism is an important factor involved in tumorigenesis, progression, and survival of tumor cells. Besides, other metabolites produced in the arginine metabolism process, such as polyamines, nitric oxide, argininosuccinate, and agmatine, play key roles in different stages of tumor development. On the other hand, herbal metabolites are widely used to treat cancer. One of these herbal flavonoids is quercetin. Methods: In this study, according to MTT assay data, two concentrations of quercetin flavonoid were selected (57.5 and 115 µM) to treat human embryonic kidney 293 (HEK293) cells. Then RNA was extracted from the cells and used as a template for cDNA synthesis. Using real-time PCR, the expression of key enzymes involved in arginine metabolism was evaluated, including arginase 2 (Arg2), ornithine carbamoyl transferase (OTC), agmatinase (AGMAT), arginase 1 (Arg1), nitric oxide synthase 1 (nNOS), arginine decarboxylase (ADC), ornithine decarboxylase 1 (ODC), ornithine carbamoyl transferase (OCT), spermidine synthase (SRM), spermine synthase (SMS), argininosuccinate synthase 1 (ASS1), and argininosuccinate lyase (ASL). The Student t-test was used to analyze the data considering a P value of 0.05 as the significance level. Results: Our results indicated significant changes in the expression of arginine metabolism enzymes after quercetin exposure, confirming a role for quercetin plant flavonoid in regulating arginine metabolism in HEK293 cells. Conclusions: Quercetin could alter the gene expression of the key enzymes involved in arginine metabolism. This was the first study investigating the effects of quercetin on arginine metabolism in HEK293 cells.
Keywords :
Arginine , Cancer , HEK293 Cell , Quercetin , Polyamine