Title of article :
Geochemical anomaly detection in the Irankuh District using Hybrid Machine learning technique and fractal modeling
Author/Authors :
Afzal ، Peyman Department of Petroleum and Mining Engineering - Islamic Azad University, South Tehran Branch , Farhadi ، Sasan Department of Structural, Geotechnical and Building Engineering - Polytechnic University of Turin , Boveiri Konari ، Mina Department of Economic Geology - Tarbiat Modares University , Shamseddin Meigoony ، Mojtaba Department of Earth Sciences - Islamic Azad University, Science and Research Branch , Daneshvar Saein ، Lili Department of Geology - Payame Noor University
Abstract :
Prediction of elemental concentrations is essential in mineral exploration as it plays a vital role in detailed exploration. New machine learning (ML) methods such as hybrid models are robust approaches infrequently used concerning other methods in this field; therefore, they have not been examined properly. In this study, a hybrid machine learning (HML) method was proposed based on combining KNearest Neighbor Regression (KNNR) and Random Forest Regression (RFR) to predict Pb and Zn grades in the Irankuh mining district, Sanandaj-Sirjan Zone. The aim of the proposed study is to employ the hybrid model as a new method for grade distribution. The KNNR-RFR hybrid model results have been applied for the Pb and Zn anomalies classification. The hybrid (KNNR-RFR) method has shown more accurate prediction outputs based on the correlation coefficients than the single regression models with 0.66 and 0.54 correlation coefficients for Pb and Zn, respectively. The KNN-RF results were used for the classification of Pb and Zn anomalies in the study area. The concentration-area fractal model separated the main anomalous areas for these elements. The Pb and Zn main anomalies were correlated with mining activities and core drilling data. The current study demonstrates that the hybrid model has a substantial potential for the ore elemental distribution prediction. The presented model expresses a promising result and can predict ore grade in similar investigations.
Keywords :
Hybrid Machine Learning , Geochemical Anomaly Detection , K , Nearest Neighbor Regression (KNNR) , Random Forest Regression (RFR) , Fractal Modeling
Journal title :
Geopersia
Journal title :
Geopersia