Title of article :
Preparation of stable enteric folic acid-loaded microfiber using the electrospinning method
Author/Authors :
Akhgari ، Abbas Department of Pharmaceutics - School of Pharmacy, Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute - Mashhad University of Medical Sciences , Iraji ، Pariya Department of Pharmaceutics - School of Pharmacy - Mashhad University of Medical Sciences , Rahiman ، Niloufar Department of Pharmaceutical Nanotechnology - Nanotechnology Research Center, Pharmaceutical Technology Institute, School of Pharmacy - Mashhad University of Medical Sciences , Hasanzade Farouji ، Akram Department of Pharmaceutics - School of Pharmacy - Mashhad University of Medical Sciences , Abbaspour ، Mohammadreza Department of Pharmaceutics - School of Pharmacy, Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute - Mashhad University of Medical Sciences
Abstract :
Objective(s): Folic acid is an essential vitamin, labile to hydrolysis in the acidic environment of the stomach with low water solubility and bioavailability. In order to solve these problems, enteric oral folic acid-loaded microfibers with a pH-sensitive polymer by electrospinning method were prepared. Materials and Methods: Electrospinning was performed at different folic acid ratios and voltages. Fibers were evaluated in terms of mechanical strength, acidic resistance, and drug release. Additionally, DSC (Differential Scanning Calorimetry), FTIR (Fourier-transform infrared spectroscopy), and XRD (X-ray diffraction) analyses were performed on the optimal formulation. Results: Drug ratio and voltage had a considerable effect on fibers’ entrapment efficiency, acid resistance, and mechanical strength. Based on the obtained results, the optimum formulation containing 1.25% of the drug/polymer was prepared at 18 kV. The entrapment efficiency of the optimal sample was above 90% with an acid resistance of higher than 70%. The tensile test confirmed the high mechanical properties of the optimum microfiber. DSC and XRD tests indicated that folic acid was converted to an amorphous form in the fiber structure and the FTIR test confirmed the formation of a chemical bond between the drug and the polymer. The release of the drug from the optimal fiber was about 90% in 60 min. Conclusion: In conclusion, the optimal formulation of folic acid with proper mechanical properties can be used as a candidate dosage form for further bioavailability investigations.
Keywords :
Electrospinning , Enteric , Eudragit , folic acid , Microfiber
Journal title :
Iranian Journal of Basic Medical Sciences
Journal title :
Iranian Journal of Basic Medical Sciences