Title of article :
Using Leray-Schauder topological degree to solve a linear diffusion parabolic equation with periodic initial conditions
Author/Authors :
Hameed, Raad Awad Department of Mathematics - College of Education for Pure Sciences - Tikrit University, Tikrit, Iraq , Ghaffoori, Faez N. Department of Mathematics - College of Basic Education - Mustansiriyah University, Baghdad, Iraq , Mustafa, Hekmat sh. Department of Mathematics - College of Education - Al- Hamdaniya University, Mosul, Iraq , Taha, Wafaa M. Department of Mathematics - College of Sciences - Kirkuk University, Kirkuk, Iraq , Rasheed, Maan A. Department of Mathematics - College of Basic Education - Mustansiriyah University, Baghdad, Iraq
Pages :
10
From page :
1629
To page :
1638
Abstract :
Throughout this manuscript, we show time periodic solutions to a linear diffusion parabolic equation with Diriclet condition. Based on the topological degree theorem, we prove a time periodic solutions of the system such that we found the fixed point when the domain of the solution is sufficiently small.
Keywords :
weakly nonlinear sources , Diriclet boundary conditions , Time-periodic solution , Topological degree theorem
Journal title :
International Journal of Nonlinear Analysis and Applications
Serial Year :
2022
Record number :
2712416
Link To Document :
بازگشت