• Title of article

    Nitroxide mediated radical polymerization of styrene from poly(ethylene terephthalate) and its polymer/montmorillonite nanocomposite

  • Author/Authors

    Ghasemi Karaj-Abad ، Saber Department of Chemistry - Payame Noor University , Sadr ، Lily Department of Chemistry - Payame Noor University , Abbasian ، Mojtaba Department of Chemical Engineering - University of Bonab , Hosseinzadeh ، Mehdi Marand Faculty of Technical and Engineering - University of Tabriz , Esmaeily Shoja ، Solmaz Lab. of Materials - Faculty of Engineering - Islamic Azad University, Bonab branch , Jaymand ، Mehdi Nano Drug Delivery Research Center, Health Technology Institute - Kermanshah University of Medical Sciences

  • From page
    163
  • To page
    174
  • Abstract
    In this study, for the first time, a novel strategy for the synthesis of graft copolymers using polystyrene (PSt) monomer from surface modification of poly(ethylene terephthalate) PET through surface-initiated nitroxide-mediated radical polymerization was performed. For this purpose, the PET surface was first aminated by 1,3-diamino propane, which was used as an amination agent. Second, phenyl chloro acetylation of PET was prepared by coupling amino and hydroxyl groups with α-phenyl chloro acetyl chloride. Afterward, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) was synthesized, then 1-hydroxy-2,2,6,6-tetramethylpiperidine (TEMPO–OH) was obtained by reduction of TEMPO with sodium ascorbate and coupled with chloroacetylated PET to obtain PET-TEMPO macroinitiator. Furthermore, the (St) monomer was grafted onto the PET surfaces through the “grafting from” technique. The obtained macroinitiator for living radical polymerization was heated in the adjacency of (St) monomer to obtain the graft copolymer (PETg- PSt) onto the PET surfaces. Finally, PET-g-PSt/MMt nanocomposite was synthesized by the solution intercalation method. The surface combination, morphology, and thermal properties of the modified PET films were proved using various characterization methods such as transform infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance (1H NMR), differential scanning calorimetry (DSC), thermogravimetric analysis, X-ray photoelectron spectroscopy, and termination electron microscopy (TEM).
  • Keywords
    NitroxideMediated Radical Polymerization (NMRP) , TEMPO , Poly (ethylene terephthalate) (PET) , Surfaceinitiated Polymerization , graft copolymer
  • Journal title
    Polyolefins Journal
  • Journal title
    Polyolefins Journal
  • Record number

    2722701