Title of article :
Automated Lung Segmentation from Computed Tomography Images of Normal and COVID-19 Pneumonia Patients
Author/Authors :
Gholamiankhah ، Faeze Department of Medical Physics - School of Medicine - Shahid Sadoughi University of Medical Sciences , Mostafapour ، Samaneh Department of Radiology Technology - School of Paramedical Sciences - Mashhad University of Sciences , Abdi Goushbolagh ، Nouraddin Department of Medical Physics - School of Medicine - Shahid Sadoughi University of Medical Sciences , Shojaerazavi ، jafar Department of Cardiology - Ghaem Hospital - Mashhad University of Medical Sciences , Layegh ، Parvaneh Department of Radiology - School of Medicine - Mashhad University of Medical Sciences , Tabatabaei ، Mohammad Department of Medical Informatics, Clinical Research Development Unit - School of Medicine, Imam Reza Hospital - Mashhad University of Medical Sciences , Arabi ، Hossein Division of Nuclear Medicine and Molecular Imaging - Geneva University Hospital
From page :
440
To page :
449
Abstract :
Background: Automated image segmentation is an essential step in quantitative image analysis. This study assesses the performance of a deep learning-based model for lung segmentation from computed tomography (CT) images of normal and COVID-19 patients. Methods: A descriptive-analytical study was conducted from December 2020 to April 2021 on the CT images of patients from various educational hospitals affiliated with Mashhad University of Medical Sciences (Mashhad, Iran). Of the selected images and corresponding lung masks of 1,200 confirmed COVID-19 patients, 1,080 were used to train a residual neural network. The performance of the residual network (ResNet) model was evaluated on two distinct external test datasets, namely the remaining 120 COVID-19 and 120 normal patients. Different evaluation metrics such as Dice similarity coefficient (DSC), mean absolute error (MAE), relative mean Hounsfield unit (HU) difference, and relative volume difference were calculated to assess the accuracy of the predicted lung masks. The Mann- Whitney U test was used to assess the difference between the corresponding values in the normal and COVID-19 patients. P 0.05 was considered statistically significant. Results: The ResNet model achieved a DSC of 0.980 and 0.971 and a relative mean HU difference of -2.679% and -4.403% for the normal and COVID-19 patients, respectively. Comparable performance in lung segmentation of normal and COVID-19 patients indicated the model’s accuracy for identifying lung tissue in the presence of COVID-19-associated infections. Although a slightly better performance was observed in normal patients. Conclusion: The ResNet model provides an accurate and reliable automated lung segmentation of COVID-19 infected lung tissue. A preprint version of this article was published on arXiv before formal peer review (https://arxiv.org/abs/2104.02042).
Keywords :
COVID , 19 , Lung , Computed Tomography , X , ray , Image Processing , ComputerAssisted , Deep Learning
Journal title :
Iranian Journal of Medical Sciences (IJMS)
Journal title :
Iranian Journal of Medical Sciences (IJMS)
Record number :
2726879
Link To Document :
بازگشت