Title of article :
Flag curvatures of the unit sphere in a Minkowski-Randers space
Author/Authors :
Huang, Libing School of Mathematical Sciences - Nankai University - Tianjin, P. R. China , Su, Haibin School of Mathematical Sciences - Nankai University - Tianjin, P. R. China
Pages :
8
From page :
275
To page :
282
Abstract :
On a real vector space V , a Randers norm Fˆ is defined by Fˆ = ˆα+βˆ, where ˆα is a Euclidean norm and βˆ is a covector. We show that the unit sphere Σ in the Randers space (V, Fˆ) has positive flag curvature, if and only if |βˆ|αˆ < (5 − √ 17)/2 ≈ 0.43845, thus answering a problem proposed by Prof. Zhongmin Shen. Moreover, we prove that the flag curvature of Σ has a universal lower bound −4.
Keywords :
Flag curvature , Randers metric , Riemannian metric
Journal title :
AUT Journal of Mathematics and Computing
Serial Year :
2021
Record number :
2727547
Link To Document :
بازگشت