Title of article :
In Silico Analysis of Stem Cells Mechanical Stimulations for Mechnoregulation Toward Cardiomyocytes
Author/Authors :
Ebad ، M. Faculty of New Sciences and Technologies - University of Tehran , Vahidi ، B. Faculty of New Sciences and Technologies - University of Tehran
From page :
2229
To page :
2237
Abstract :
Because of the ability of stem cells to self-renew and differentiate into cardiomyocytes, they are optimal cell sources for cardiac tissue engineering. Since heart cells experience cyclic strain and pulsatile flow in vivo, these mechanical stimuli are essential factors for stem cell differentiation. This study aimed to investigate the effect of a combination of pulsatile flow and cyclic strain on the shear stress created on the embryonic stem cell layer with a elastic property in a perfusion bioreactor by using the fluid-solid interaction (FSI) method. In this study, the frequency and stress phase angle had been assumed as a variable. The results show that the maximum shear stress at frequencies of 0.33, and 1 Hz and with frequency differences in cyclic strain (0.33 Hz) and pulsatile flow (1 Hz) are 0.00562, 0.02, and 0.01 dyn/cm², respectively. Moreover, in the stress phase angles 0, 𝜋4⁄, and 𝜋2⁄, the maximum shear stress are equal to 0.00562, 0.009, and 0.014 dyn/cm², respectively. The results of this study can be an effective step in developing cardiac tissue engineering and a better understanding of the effects of mechanical stimuli on stem cell differentiation.
Keywords :
Cardiac Tissue Engineering , Pulsatile Flow , Cyclic Strain , Stress Phase Angle , Shear Stress
Journal title :
International Journal of Engineering
Journal title :
International Journal of Engineering
Record number :
2728232
Link To Document :
بازگشت