Author/Authors :
Dragomir, Silvestru Sever College of Engineering and Science - Victoria University - Melbourne, Australia
Abstract :
Let E be a complex Banach space. In this paper we show among others that, if α:[a,b]→C is continuous and Y:[a,b]→E is strongly differentiable on the interval (a,b), then for all u∈[a,b],
‖(∫_{u}^{b}α(s)ds)Y(b)+(∫_{a}^{u}α(s)ds)Y(a)-∫_{a}^{b}α(t)Y(t)dt‖ ≤{┊max{∫_{u}^{b}|α(s)|ds,∫_{a}^{u}|α(s)|ds}∫_{a}^{b}‖Y′(t)‖dt, [∫_{u}^{b}(b-t)|α(t)|dt+∫_{a}^{u}(t-a)|α(t)|dt]sup_{t∈[a,b]}‖Y′(t)‖, ≤(b-a)^{1/p}[(∫_{u}^{b}|α(s)|ds)^{p}+(∫_{a}^{u}|α(s)|ds)^{p}]^{1/p}
×(∫_{a}^{b}‖Y′(t)‖^{q}dt)^{1/q}
for p, q>1 with (1/p)+(1/q)=1. Applications for operator monotone functions with examples for power and logarithmic functions are also given