Title of article :
Connes amenability for certain product of Banach algebras
Author/Authors :
Ghaffari ، Ali Department of Mathematics - University of Semnan , Javadi ، Samaneh Faculty of Technology and Engineering - University of Guilan , Tamimi ، Ebrahim Department of Mathematics - University of Semnan
From page :
1
To page :
14
Abstract :
In this paper we develop the notions of Connes amenability for certain product of Banach algebras. We give necessary and sufficient conditions for the existence of an invariant mean on the predual of $\Theta$-Lau product $\mathcal{A}\times_{\Theta}\mathcal{B}$, module extension Banach algebra $\mathcal{A}\oplus\mathcal{X}$ and projective tensor product $\mathcal{A} \widehat{{\otimes}} \mathcal{B}$, where $\mathcal{A}$ and $\mathcal{B}$ are dual Banach algebras with preduals $\mathcal{A}_*$ and $\mathcal{B}_*$ respectively and $\mathcal{X}$ is a normal Banach $\mathcal{A}$-bimodule with predual $\mathcal{X}_*$.
Keywords :
Connes amenability , Banach algebras , derivation , group algebra , invariant mean
Journal title :
Wavelets and Linear Algebra
Journal title :
Wavelets and Linear Algebra
Record number :
2734795
Link To Document :
بازگشت