Title of article :
N-strongly quasi-invariant measure on double coset spaces
Author/Authors :
Fahimian ، Fatemeh Department of Mathematics - Center of Excellecy in Analysis on Algebric Structures (CEAAS) - Ferdowsi University of Mashhad , Kamyabi Gol ، Rajab Ali Department of Mathematics - Center of Excellecy in Analysis on Algebric Structures (CEAAS) - Ferdowsi University of Mashhad , Esmaeelzadeh ، Fatemeh Department of Mathematics - Islamic Azad university, Bojnourd Branch
From page :
67
To page :
84
Abstract :
Let $\mathcal{B(X)}$ be the algebra of all bounded linear operators on a complex Banach space $\mathcal{X}$. In this paper, we determine the form of a surjective additive map $\phi: \mathcal{B(X)} \rightarrow \mathcal{B(X)}$ preserving the fixed points of Jordan products of operators, i.e., $F(AoB) \subseteq F(\phi(A) o\phi(B))$, for every $A,B \in \mathcal{B(X)}$, where $AoB=AB+BA$, and $F(A)$ denotes the set of all fixed points of operator $A$.
Keywords :
Double coset space , N , Strongly quasi invariant measure , rho , function
Journal title :
Wavelets and Linear Algebra
Journal title :
Wavelets and Linear Algebra
Record number :
2734800
Link To Document :
بازگشت