Title of article :
Improving Performance of the Convolutional Neural Networks for Electricity Theft Detection by using Cheetah Optimization Algorithm
Author/Authors :
ghaedi ، hassan Department of Computer - Islamic Azad University, Neyshabur Branch , Kamel Tabbakh ، Seyed Reza Department of Computer - Islamic Azad University, Mashhad Branch , ghaemi ، reza Department of Computer - Islamic Azad University, Quchan Branch
From page :
103
To page :
115
Abstract :
Today, electricity theft is one of the main challenges for energy distribution and transmission companies around the world. Early detection of abnormal consumers can prevent security and financial losses. Extensive research studies have been done to detect electricity theft by analyzing customer consumption patterns. Today, one of the most widely used methods is convolutional neural networks (CNNs). These networks contain a large number of hyper-parameters.  The accuracy of these networks is low in most studies due to the lack of attention to the adjustment of these hyper-parameters.  Network accuracy and achieving a robust learning model are influenced by the optimal adjusting of these hyper-parameters, which requires exploring a complex and large search space. Meta-heuristic-based search methods are suitable for solving these problems. Therefore, the main contribution of this paper is to use the high ability of the cheetah optimization algorithm (CHOA) to optimally extract CNN hyper-parameters. In this paper, in order to balance the dataset, abnormal samples are created using artificial attacks and added to the dataset. Also, in order to increase the accuracy of the network, abnormal data are clustered using the CHOA algorithm. ISSDA dataset is used to test and evaluate the results. Based on the results obtained and comparing them with the other works, it was proved that the proposed framework with high accuracy identifies abnormal consumers.
Keywords :
Data mining , Classification , Electricity Theft Detection , convolutional neural network (CNN)
Journal title :
Majlesi Journal of Electrical Engineering
Journal title :
Majlesi Journal of Electrical Engineering
Record number :
2736213
Link To Document :
بازگشت