Title of article :
Malware Detection using Deep Neural Networks on Imbalanced Data
Author/Authors :
Mohammed ، Mohammed Abdulkreem Department of Anesthesia Techniques - Al-Noor University College , Smait ، Drai Ahmed The University of Mashreq , Al-Tahai ، Mustafa Medical technical college/ Al-Farahidi University , Kamil ، Israa S. Medical Laboratories Techniques Department - Al-Mustaqbal University College , Al-Majdi ، Kadhum Department of biomedialc engineering - Ashur University College , Khaleel ، Shahad K. Al-Esraa University College
From page :
123
To page :
129
Abstract :
Through the use of malware, particularly JavaScript, cybercriminals have turned online applications into one of their main targets for impersonation. Detection of such dangerous code in real-time, therefore, becomes crucial in order to prevent any harmful action. By categorizing the salient characteristics of the malicious code, this study suggests an effective technique for identifying malicious Java scripts that were previously unknown, employing an interceptor on the client side. By employing the wrapper approach for dimensionality reduction, a feature subset was generated. In this paper, we propose an approach for handling the malware detection task in imbalanced data situations. Our approach utilizes two main imbalanced solutions namely, Synthetic Minority Over Sampling Technique (SMOTE) and Tomek Links with the object of augmenting the data and then applying a Deep Neural Network (DNN) for classifying the scripts. The conducted experiments demonstrate the efficient performance of our approach and it achieves an accuracy of 94.00%.
Keywords :
malware detection , Imbalanced Data , Convolutional neural networks , SMOTE , Tomek Links
Journal title :
Majlesi Journal of Electrical Engineering
Journal title :
Majlesi Journal of Electrical Engineering
Record number :
2736215
Link To Document :
بازگشت