Title of article :
EQUIVALENCE OF SEQUENTIAL HENSTOCK AND TOPOLOGICAL HENSTOCK INTEGRALS FOR INTERVAL VALUED FUNCTIONS
Author/Authors :
Iluebe ، Victor Odalochi Department of Mathematics - University of Lagos , Mogbademu ، Adesanmi Alao Department of Mathematics - University of Lagos
From page :
267
To page :
274
Abstract :
Suppose $X$ is a locally compact Hausdorff space and $\Omega \in \bigtriangleup$. If $ F $ is an interval valued function defined in $ \Omega $ with $F:\bar \Omega\rightarrow I_{\mathbb{R}}$. Suppose $F$ is Topological Henstock integrable, is $ F $ Sequential Henstock integrable? Therefore, the purpose of this paper is to provide a positive response to this query.
Keywords :
Sequential Henstock integral , Interval valued functions , Topo , logical Henstock , guages
Journal title :
Journal of Mahani Mathematical Research Center
Journal title :
Journal of Mahani Mathematical Research Center
Record number :
2743850
Link To Document :
بازگشت