Title of article :
A Relationships-based Algorithm for Detecting the Communities in Social Networks
Author/Authors :
Fotovvat ، Sevda Department of Computer Science - University of Tabriz , Izadkhah ، Habib Department of Computer Science - University of Tabriz , Hajipour ، Javad Department of Computer Science - University of Tabriz
Abstract :
Social network research analyzes the relationships between interactions, people, organizations, and entities. With the developing reputation of social media, community detection is drawing the attention of researchers. The purpose of community detection is to divide social networks into groups. These communities are made of entities that are very closely related. Communities are defined as groups of nodes or summits that have strong relationships among themselves rather than between themselves. The clustering of social networks is important for revealing the basic structures of social networks and discovering the hyperlink of systems on human beings and their interactions. Social networks can be represented by graphs where users are shown with the nodes of the graph and the relationships between the users are shown with the edges. Communities are detected through clustering algorithms. In this paper, we proposed a new clustering algorithm that takes into account the extent of relationships among people. Outcomes from particular data suggest that taking into account the profundity of people-to-people relationships increases the correctness of the aggregation methods.
Keywords :
Social Networks , Complex networks , community detection , Community Sensing , Graph Clustering
Journal title :
International Journal of Web Research
Journal title :
International Journal of Web Research